Symmetry of a Pfaffian system

It is a particular case of a symmetry of an EDS.

Given a Pfaffian system $\mathcal{P}=\mathcal{S}(\{\alpha_1,\ldots,\alpha_r\})$, a vector field $X$ is called a symmetry of $\mathcal{P}$ if

$$ \mathcal{L}_X \omega \in \mathcal{P} $$

for every $\omega\in \mathcal{P}$. If the Pfaffian system is seen like a distribution (see dual description of the distribution) then $X$ corresponds to a symmetry of a distribution.

________________________________________

________________________________________

________________________________________

Author of the notes: Antonio J. Pan-Collantes

antonio.pan@uca.es


INDEX: