It is a particular case of a symmetry of an EDS.
Given a Pfaffian system $\mathcal{P}=\mathcal{S}(\{\alpha_1,\ldots,\alpha_r\})$, a vector field $X$ is called a symmetry of $\mathcal{P}$ if
$$ \mathcal{L}_X \omega \in \mathcal{P} $$for every $\omega\in \mathcal{P}$. If the Pfaffian system is seen like a distribution (see dual description of the distribution) then $X$ corresponds to a symmetry of a distribution.
________________________________________
________________________________________
________________________________________
Author of the notes: Antonio J. Pan-Collantes
INDEX: